Langsung ke konten utama

Pathophysiology of Congestive Heart Failure (CHF)

Congestive Heart Failure (CHF)


Congestive Heart Failure (CHF)

Congestive heart failure, or heart failure, is a condition in which the heart is unable to adequately pump blood throughout the body and/or unable to prevent blood from "backing up" into the lungs.

In most cases, heart failure is a process that occurs over time, when an underlying condition damages the heart or makes it work too hard, weakening the organ. Heart failure is characterized by shortness of breath (dyspnea) and abnormal fluid retention, which usually results in swelling (edema) in the feet and legs.

Pathophysiology of Congestive Heart Failure (CHF)

Heart failure occurs, the body undergoes some adaptation, both in heart and systemically. If the stroke volume of both ventricles is reduced, because of pressure contractility, or afterload are greatly increased, the volume and pressure at the end of diastolic heart in two space will increase. This will increase the end diastolic myocardial fiber length, causing systolic time becomes shorter. If this condition lasts long, there was dilatation of the ventricles. Cardiac output at rest can still be good, but the increase in diastolic pressure that persists / chronicle will spread to both the atrium and the pulmonary circulation and systemic circulation.

Finally, capillary pressure will increase which will cause fluid transudation and pulmonary edema or systemic edema. Decrease in cardiac output, especially if associated with a decrease in arterial pressure or decreased renal perfusion, will activate several neural and humoral systems. Increased activity of the sympathetic nervous system will stimulate myocardial contraction, heart rate and venous; changes that last time, will increase central blood volume which in turn increases the preload.

Although the adaptation was designed to increase cardiac output, the adaptation itself can interfere with the body. Therefore, tachycardia and increased myocardial contractility stimulated the occurrence of ischemia in patients with previous coronary artery disease and increased preload may worsen pulmonary congestion.

Activation of the sympathetic nervous system will also increase peripheral resistance, this adaptation designed to maintain perfusion to vital organs, but if the activation is greatly increased, will decrease the flow to the kidneys and tissues. Peripheral vascular resistance may also be the main determinant of ventricular afterload, so that excessive sympathetic activity can improve heart function. One important effect is the decrease in cardiac output decreased renal blood flow and decrease in filtration velocity glomerolus, which will cause sodium and fluid retention.

System renin - angiotensin - aldosterone also be activated, causing further increase in peripheral vascular resistance and increased left ventricular afterload as sodium and fluid retention. Heart failure is associated with increased levels of arginine vasopressin in the circulation increases, which also is vasokontriktor and inhibiting the excretion of fluids. In heart failure atrial natriuretic peptide increased due to increased atrial pressure, which indicates that there is resistance to the effects of natriuretic and vasodilator.

Komentar

Postingan populer dari blog ini

Pathophysiology of Appendicitis

Appendicitis The appendix is a small, tube-like organ attached to the first part of the large intestine, also called the colon. It is located in the lower right area of the abdomen. It has no known function. A blockage inside of the appendix causes appendicitis. The blockage leads to increased pressure, problems with blood flow and inflammation. If the blockage is not treated, the appendix can break open and leak infection into the body. Pathophysiology of Appendicitis The main cause of appendicitis is obstuksi blockage which can be caused by hyperplasia of the follicles lympoid is the most common cause of fekalit in appendix lumen. The presence of foreign objects such as: worms, stricture due to fibrosis, as a result of previous inflammation. For another example: malignancy (carcinoid carcinoma). Appendix obstruction that causes mucus produced by mucous unstoppable, more and more mucus is unstoppable and suppress edema appendix wall and stimulate the tunica serosa and vis...

Pathophysiology of Typhoid Fever

Typhoid fever , also known as Typhoid , is a common worldwide illness, transmitted by the ingestion of food or water contaminated with the feces of an infected person, which contain the bacterium Salmonella enterica enterica, serovar Typhi. The bacteria then perforate through the intestinal wall and are phagocytosed by macrophages. The organism is a Gram-negative short bacillus that is motile due to its peritrichous flagella. The bacterium grows best at 37°C / 98.6°F – human body temperature. This fever received various names, such as gastric fever, abdominal typhus, infantile remittant fever, slow fever, nervous fever, pythogenic fever, etc. The name of "typhoid" was given by Louis in 1829, as a derivative from typhus . Pathophysiology of Typhoid Fever Transmission of Salmonella typhi can be transmitted through various ways, which is known with 5 M of the Food Fingers, Fomitus (vomiting), Fly, and through Faeces. Faeces and vomiting in patients with typhoid salmonel...